Get the latest updates on the Coronavirus impact on engineers.点击这里
工业PC

混合过程中发展产生较大量子计算机芯片

MIT engineers have developed a hybrid process that connects photonics with “artificial atoms,” to produce the largest quantum chip of its type.

通过贝基火腿 July 14, 2020
此图描绘了量子光子芯片及其装配工艺的程式化渲染。该图像示出的下半部一个运作量子微小芯片(QMC),其发射被路由和操作上的光子集成电路(PIC)的单光子的脉冲。上半部分的图像显示的该芯片是如何制造:金刚石QMCS是分开制造,然后转移到所述PIC。礼貌:诺埃尔H.万,美国麻省理工学院(MIT)

麻省理工亚洲必赢学院的研究已经开发出一种方法制造和集成“人造原子”,由原子尺度缺陷的金刚石显微镜薄片,用光子电路产生,产生它的类型的最大量子芯片。量子处理器的数以百万计将需要构建量子计算机,而新的研究表明一种可行的方式来扩展处理器的生产,他和他的同事指出。亚洲必赢

不像传统计算机,它处理和存储信息用比特来表示通过任一0和1,量子计算机上运行使用量子位,量子位或者,其可同时表示0,1,或两者。这种奇特的属性允许量子计算机可以同时执行多个计算,解决问题,这将是棘手的经典计算机。

在新的芯片的量子位是从在金刚石的缺陷,其可与可见光和微波炉被戳以发射携带量子信息的光子人造原子。该过程是一种混合的方法,在严格挑选“量子微小芯片”包含多个基于金刚石的量子位被置于氮化铝光子集成电路上。

“在过去的20年量子工程,它一直以相当于集成的电子卷制造这种人造量子系统的最终目标,”德克·英格伦,电气工程和计算机科学的麻省理工学院的部门的副教授说。“虽然有了显着的进步,这个研究非常活跃的领域,制造和材料并发症迄今只取得了两到每个光子系统三个发射器。”亚洲必赢

利用混合方法,英格伦和他的同事们能够建立一个128量子比特系统 - 最大的综合性人造原子,光子芯片呢。

“It’s quite exciting in terms of the technology,” said Marko Lončar, the Tiantsai Lin Professor of Electrical Engineering at Harvard University, who was not involved in the study. “They were able to get stable emitters in a photonic platform while maintaining very nice quantum memories.”

在其他作者性质paper include MIT researchers Noel H. Wan, Tsung-Ju Lu, Kevin C. Chen, Michael P. Walsh, Matthew E. Trusheim, Lorenzo De Santis, Eric A. Bersin, Isaac B. Harris, Sara L. Mouradian and Ian R. Christen; with Edward S. Bielejec at Sandia National Laboratories.

对于小芯片质量控制

的artificial atoms in the chiplets consist of color centers in diamonds, defects in diamond’s carbon lattice where adjacent carbon atoms are missing, with their spaces either filled by a different element or left vacant. In the MIT chiplets, the replacement elements are germanium and silicon. Each center functions as an atom-like emitter whose spin states can form a qubit. The artificial atoms emit colored particles of light, or photons, that carry the quantum information represented by the qubit.

钻石的色心好好固态量子比特,而是“借助这个平台实际上是建立一个系统和设备架构,可以扩展到千千万万个量子位中的瓶颈,”诺埃尔研究员宛H.说。亚洲必赢“人造原子处于固晶,和不希望的污染可能会影响重要量子性质,如相干时间。另外,晶体内的变化可导致这些量子位是彼此不同,这使得它难以按比例这些系统“。

而不是试图在钻石完全建立一个大型的量子芯片,研究人员决定采取模块化和混合的方法。亚洲必赢“我们使用的半导体制造技术,使钻石的这些小的小芯片,从中我们只选择最高质量的量子比特的模块,”万说。“然后,我们片逐片整合这些小芯片到另一个芯片,‘线’小芯片连成一个较大的设备。”

The integration takes place on a photonic integrated circuit, which is analogous to an electronic integrated circuit but uses photons rather than electrons to carry information. Photonics provides the underlying architecture to route and switch photons between modules in the circuit with low loss. The circuit platform is aluminum nitride, rather than the traditional silicon of some integrated circuits.

“The diamond color centers emit in the visible spectrum. Traditional silicon, however, absorbs visible light, which is why we turn to aluminum nitride for our photonics platform, as it is transparent in that regime,” said researcher Tsung-Ju Lu. “Furthermore, aluminum nitride can support photonic switches that are functional at cryogenic temperatures, which we operate at for controlling our color centers.”

使用光子电路和钻石器芯片的这种混合方法,研究人员能够在一个平台上连接128个量子位。亚洲必赢这些量子位是稳定和长寿命的,并且其排放可以在电路内被调谐以产生光谱不可区分的光子,根据万和同事。

一个模块化的方法

While the platform offers a scalable process to produce artificial atom-photonics chips, the next step will be to “turn it on” and test its processing skills.

“这是一个概念证明是固态量子比特的发射是非常可扩展的量子技术,”万说。“为了处理量子信息,下一个步骤将是控制这些大量量子位并且也诱导它们之间的相互作用。”

The qubits in this type of chip design wouldn’t necessarily have to be these particular diamond color centers. Other chip designers might choose other types of diamond color centers, atomic defects in other semiconductor crystals like silicon carbide, certain semiconductor quantum dots, or rare-earth ions in crystals. “Because the integration technique is hybrid and modular, we can choose the best material suitable for each component, rather than relying on natural properties of only one material, thus allowing us to combine the best properties of each disparate material into one system,” Lu said.

Finding a way to automate the process and demonstrate further integration with optoelectronic components such as modulators and detectors will be necessary to build even bigger chips necessary for modular quantum computers and multichannel quantum repeaters that transport qubits over long distances, the researchers said.

麻省理工学院(MIT)

www.mit.edu

– Edited by Chris Vavra, associate editor,必赢亚洲平台,CFE媒体和技术,cvavra@cfemedia.com


Becky Ham
Author Bio:贝基火腿,MIT讯记者